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Basic Research

* Basic POSS research funded by AFOSR

Basic and Applied Research

Solid Rocket Motors

» Polymers are >50% of inert
mass

* Nanocomposites allow
significant weight reduction

* Transition target - Boost,
strategic, & tactical SRMs

» Use possible in other

Air Force applications

Atlas V

Liquid Rocket Engines

* Fluorinated polymer
nanocomposites

* Reduce cost and
improve performance

* Most hydrophobic
crystalline solids known
» Superoleophobic
surfaces produced
*Fuel separation

Engine

Distribution A: Approved for pub

Polymer Matrix Composites

* Replace metals for mass
reduction el
» Resistance to oxidation seen in ‘

nanocomposite PMCs _ ’
* Developing PMC resins for i ‘

high-temperature applications
Bushings

* Moisture uptake properties
improved with added nano-
materials
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J Hybrid Inorganic/Organic Polymers

Toughness, Lightweight &
Ease of Processing

65/’
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>

/ POSS (RSiOl.S)n

3

® Organic-inorganic framework

R
. ¢} Inorganlc Si-O core
* Well-defined, 3-D nanostructure o~ ,S(')/ \S'
\SI/ \SI/
_ Organic peripheral
®* Can carry functional groups O/ \S /
. x '—o //
®* Thermally and chemically robust . /s.f
R/ O \R
®* Usedin thermoset and thermoplastic polymers, | Y J
temperature nanocomposites, coatings, surface
~0.5 nm Si to Si

modifiers, and many other applications 0.5-1.5 nm particles

Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chem. Rev. 2010, 110, 2081.
Phillips, S. H.; Haddad, T. S.; Tomczak, S. J. Current Opinion in Solid State and Materials Science 2004, 8, 21.
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)
\/ Introduction to F-POSS

R Rf

W 00 —O~s" (1,1,2,2-tetrahydroperfluorodecyl)sSigO,, Polyhedral Oligomeric Silsesquioxane (POSS), or

f\Siljo\Si:dX) fluorodecyl POSS

(/ X)Rf/ - hybrid organic-inorganic structure !
RF\ , . _
\ o I\o,//sl\ - well-defined polyhedral architecture
si’ S'/d " - long-chain fluoroalkyl substituents on periphery of cage
o —0—" g y periphery g
f

f

Due to its unique structure, fluorodecyl POSS has one of the lowest surface energies of an

crystalline solid currently known

- fluorodecyl POSS 9.3 mN/m
- polytetrafluoroethylene 18-20 mN/m
- CF; monolayer 6.7 mN/m

Low surface energy and other unique properties of fluorodecyl POSS has enabled the
development of various types of tunable non-wetting polymeric surfaces

» Methylene P i
> Octane s € o
V.Meghano_l i 2 3 I : Water a
Sivh S5 07 E R Y

Superhydrophobic/oleophilic dip-coated fabric
Tuteja et al, Science, 2007, 318, 1618

Superamphiphobic electrospun surfaces
Tuteja et al, PNAS, 2008, 105, 18200

Superamphiphobic dip-coated fabric
Choi et al, Adv Mater, 2009, 21, 2190
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Synthesis of F-POSS
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Functional F-POSS (Open-Caged)

* Close-caged structures are accessible and have proven versatile in polymer composites
— Limitations
* Solubility, mechanical robustness (surface abrasion), no sites for functionality
* Open-caged structures would allow for functionalization of F-POSS
— Open door for use a building block material for low surface energy materials
 Applications
— Mechanical robust superhydrophobic/oleophobic/omniphobic surfaces
* Via covalently attached F-POSS to substrate (surface, nanoparticle, polymer matrix)
— Effects on polymer composite properties
* Wetting, phase behavior, solubility, etc....

R _-OH R o Ry

oS Ssi— "~ ~si”
i O~g;-OH 910 d
Sig Si ~sig SiZ

*  Open cages lead to functional POSS structures
. Reactions are simple
*  Highyields typically reported
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Methods to Produce Incompletely
Condensed Silsesqguioxanes

* Bottom-up approach  Top-down Approach
— Acid or base mediated from — Strong acid or base mediated
RSiCl; or RSi(OR); — Starting from a POSS cage
— Condensation reaction — Conversion of Si-O-Si bonds
— Balance of stoichiometry, to Si-O ) C*) or Si-OH bonds
temperature, reaction time, — Opening up POSS cage

patience, and luck

— Stopping POSS synthesis
early, before cages closes

— More common approach

Which method can be applied to F-POSS?

Feher, F. J.; Terroba, R.; Ziller, J. W. Chemical Communications 1999, 2309. Feher, F. J.; Newman D.A;. Walzer, J.M., J. Am. Chem. Soc., 1989, 111, 1741. Feher, F. J,;
Soulivong, D.; Nguyen, F.; Ziller, J. W. Angew.Chem. Inter. Ed.1998, 37, 2663. Feher, F. J.; Soulivong, D.; Nguyen, F. Chem. Commun. 1998, 1279.
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7 RSi(OCH,CHg); + 3 BASE + 12H,0 _R = CHaCHa(CF2)7CFs

|

solvent, temp.

*  Synthesis discussed in patents*
*  Works for trifluoropropyl groups
*  Solubility is critical in this reaction

*  Fluorinated compounds not miscible in
most organics once condensation begins to
occur

*  Does not work for long-chain F-POSS
. Tried under various conditions

— Solvent, temperature, reaction time, base

\S % J R = CH,CH,(CF,),CF,
Si_ . _Si

e
I i—
R \R
R R
IO//O OH O//O d
sig s ~skg Tsic
~R OH NEt d <
S S R¥i Si
E(O/ — ,. \R xloz \O.//d \R

Open cages lead to functional POSS structures
Reactions are simple
High yields typically reported

*Yamashita, Y.; Hayashi, K.; Ishihara, M.; (Mitsubishi Materials Corp., Japan; Dai Nippon Toryo Co., Ltd.). Application: JP, 2000; pp 12 pp. Yamashita, Y.; Hayashi, K.; Ishihara, M.;
(Mitsubishi Materials Corp., Japan; Dai Nippon Toryo Co., Ltd.). Application: JPJP, 2000; pp 9 pp.
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Methods to Produce Incompletely
Condensed Silsesqguioxanes

* Bottom-up approach  Top-down Approach
— Acid or base mediated from — Strong acid or base mediated
RSiCl; or RSi(OR); — Starting from a POSS cage
— Condensation reaction — Conversion of Si-O-Si bonds
— Balance of stoichiometry, to Si-O ) C*) or Si-OH bonds
temperature, reaction time, — Opening up POSS cage

patience, and luck

— Stopping POSS synthesis
early, before cages closes

— More common approach

Which method can be applied to F-POSS?

Feher, F. J.; Terroba, R.; Ziller, J. W. Chemical Communications 1999, 2309. Feher, F. J.; Newman D.A;. Walzer, J.M., J. Am. Chem. Soc., 1989, 111, 1741. Feher, F. J,;
Soulivong, D.; Nguyen, F.; Ziller, J. W. Angew.Chem. Inter. Ed.1998, 37, 2663. Feher, F. J.; Soulivong, D.; Nguyen, F. Chem. Commun. 1998, 1279.
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/
J/ Initial Reactions with Triflic Acid

R_ R O~ R R o
(0] S"
Sl/ ~si”
R
\SI/ \SI’ XD \SI \Slfdx E
c/ & CFsSOsH (/ % + other structures ¢ R R
Ry Nsi—O~si”
\O / (o)d \O / O//O
S ! S’ R\Sllg \Si’d
b ch ot /b
A b
R= CH20H2(CF2)7CF3 xo: I\O’//SI\R
{ A
R I\O/SI/

®*  Fluorodecyl Tg

®* Reacted with triflicacidtoopencage — 1 =

52 54 56 58 60 —fl é
structure REInNABRERERRNLSY
T P e
®  Structures analyzed with 2°Si NMR PEYYRYRYPLTITRVDT
®*  Equivalents of triflic acid to POSS cage is \\\ \\\\\ //////

important to success of reaction

* Disappointing results

Attt A A 8 e o At !
\ T T T T T T T T T T T T T T

-52 -54 -56 -58 -60 -62 -64 -66 -68 -70 =72 -74 -76 -78 ppm

29Sj NMR taken in fluorinated solvent

. Feher, F. J.; Soulivong, D.; Nguyen, F. Chem. Commun. 1998, 1279.
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R s Ngif d
O,\/Sl/ —~Si O//I si

R\sfg \Si:g \Sl/ \S"g

o/ §> _HSOLCF; o/
R\\Si S/i \g 83ERA8RETRAZNESS  Mixture of unknown
o/ \O,/ \R \O / ANNMMOMOITUONDOOONNNOOO®DO .

\s’ | \s eeo99vcerreeecces  jncompletely caged
| 1= . .

R/ 00— R —0— \R \\\ \\\\\ ////// silsesquioxanes and

resin

R = CH,CH,(CF,),CF;

*  Afterallittle bit of refining

®* Anopen cage structure is partially

visible 52 54 56 58 60  -62  -64 -és 68 70 -T2 74  -76 —7‘8 ppm
. . . . % g gc’\q
*  Starting material is still present N 3 gsg TO_ R R o
] I [ Sl/ %I/
e
° i Lo
Reaction not very clean R\Stlg \Si/d\)

®* Siratio (1:1:2) <<SR¥\ >;Rs/i

-52 -54 -56 -58 -60 -62 -64 -66 -68 -70 =72 -74 -76 -78 ppm

29Sj NMR taken in fluorinated solvent
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MO R R orf R
070 ' r 970
R\ng \Slzdx \ng
J gR N(But),HSO, (/
AR <,
X/O, —~0-7/'~R XIO,
R/ I\O/SI:R R I\O/

R = CH,CH,(CF,),CF,

Bridge sulfate cleans up reaction

Structure significantly more stable than
then F-POSS-(OTf),, however still
difficult to isolate

Removal of starting material extremely
difficult

Siratio (1:1:2)

-62.62

-64.99

Ssi 57
0o d
R
\Sllg \Sl:

-66.29
-66.73
.

-66 -68 -70 -72 -74 -76
29Sj NMR taken in fluorinated solvent

-78 ppm
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o. 0O
N
R 0o M R R, OH HO R
>si >sit Ny
oy J 9o g 5 8RS8 N
~sigT Tsig ~sig sis I 885 N7
J gR HZO J ER/ 1 1 T O/ \O
R¥ / = Rx. di \s|/ \S_/R
o-S—o /SI\R o- '\O—/’ I\R oo i
f Si- f Si—d ~sig” \svd\o
RS —0—"\ ~0—"\ “R
R R J R\$ \ S/
o A — i\R
R = CH,CH,(CF,),CF, xf\o/ d
R/

Acidic conditions are used to remove WWWWMWMWWMMMWWWWM

the bridge sulfate complex | ‘ ‘ ‘ | ‘ ‘ ‘

Silanol peak at -58.8 ppm 8 3 8

: g 8 RO O R
F-POSS-(OH), is more stable than both >si i

R 4//0\ _d

F-POSS-(OTf),and F-POSS-SO, JSld SERE
Anal. Calcd. for CgqH3,F ;50,555 (found): \Sg;xi\ ’/84\R
C, 23.94 (23.99), H, 0.85 (0.75), F, 64.44 i i;Rd
(64.72)
Dehydration of disilanol leads to T, WWWWMWWWWWWWWW
formation

-52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 ppm

Siratio (1:1:2) 29Si NMR taken in fluorinated solvent
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)
/ Incompletely Condensed Silsesquioxane

*
‘\.}
(@] (@)
N\%
R R o R oTf RO \O R R__[OH HO R
\SI/ ~—si” S %I SI O/SI
R 070 d R O/O d R / \ R_ //O\ d
‘SI/ \SI’ ‘Sl/ \SI X) ‘Sl Sl/ Sl SI’

o/ R - CF3SOH (/ N(But 4HSO, C/ \S % HZO C/ \5
G\zg xx\ost )% \%:a \s\ojslf

Rf = CH2CH2(CF2)7CF3

Ramirez, S. M.; Diaz, Y. J.; Campos, R. ; Stone, R.T.; Haddad, T.S.; Mabry, J.M., J. Am. Chem. Soc., 2011, 133, 20084.
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®  Crystal structure is dimeric via intra- and
intermolecular hydrogen bonding between
silanols.

*  M,=,monoclinic, space group P2(1)/c,
a=11.84(10) A, b=57.11(6) A, c=19.06(2) A,
o= 90.00°, $=92.21(10) °, y=90.00 °, V=
12878(2) A3

Ramirez, S. M.; Diaz, Y. J.; Campos, R. ; Stone, R.T.; Haddad, T.S.; Mabry, J.M., J. Am. Chem. Soc., 2011, 133, 20084.
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0-°"~o0-—7'<r x
x.’ S/i—d » \O/SI\—d
R

R = CH,CH,(CF,),CF,

R, = CH,
R, = CH,CH,CH, OC(O)CHCH,

®*  Edge capping reactions typically have 40-70%
yield

®*  Main side product is starting material (recycled)

* Disilanol can revert back to closed cage during
reaction

° Reactions take 5-10 minutes

Macromer/RBM = 4178 glmol

Distribution A: Approved for public release; distribution unlimited 20



R = CH,CH,(CF,),CF,
R, = CH,
R, = CH,CH,CH, OC(O)CHCH,

*  Typically 40-70% vyield

®*  Main side product is starting
material (recycled), formed
during base addition

* Disilanol can revert back to
closed cage during reaction

. Reactions take 5-10 minutes
®* Siratio(1:2:2:4)

* NewSipeak!

AN

Si’
R‘Sl/ \SI d %

é’ -
x + CILSRR, —_NEls c/ & X)

N o™ N~
o n O.
o} 0 R OH HO
L 0w Ngi/ AN
oo
R
\ng \Sl:d

\o~ o 6 S—o /5
2 \O/SI— { _
R \ I—o—"i
R R” O
UMY N .l... |1A A oot AV - ‘""'*
""""" LI A A L I I I
10 20 -30 -40 50 60 -70 80 -90 100 110 ppm
o
o e > /
N~ LN 00 0
- LY
R 0 R
s’ i
R o//o\ d&
~st1” Si-
AN
Ry i
\o" oy
R/I\O/I
|
""""" LI A A L I I I
10 -20 -30 -40 50 60 -70 80 -90 100 110 ppm

29Sj NMR taken in fluorinated solvent
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s \Si’Rf S 51 o’/S' V _Si s
Rf\s?/ ~si-0 Ri~sig™ ~sicd Rf\s‘ug ~si-d Rf\s‘ug ~si-9
SRS Y SRS SRy
R
AR A o d ALY N 0d
o>~ /d I\Rf (O’ '—o- /d I\Rf &,O’ i ~Rs¢ E:O \ A R¢
II\O/ i- —o— i- Sl—o—°SI- R —o— |\fR
R \Rf R¢” \Rf Ry " ;
29.5 ppm -17.8ppm 32.1ppm -17.8 ppm
: Si : ‘\_\_\_\/_/_/_/7
R o o I
\Si' ./Rf \SI R O/ \O
~ %I f\ > Rf
R 0 d R 9" Yo R Si 57
f\sl/ \SI, \S/ v f O// |
g Ry o’/('j i Ri~sit O\Si/d
C/ R E E) 5/ Rf\s‘ug ~si-0 G “R¢
i -8 Ri<ki : O->'—o-/—'<Rr
—~0— f~Sj i . i f
R \ 0-°'—0-—7'~R i |—d
Ry . g R —0—
I\O/ - Rf/ \Rf
Ry \Rf
-45.5 ppm -17.1 ppm 17.9 ppm

R = CH,CH,(CF,),CF,
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Si
~
\SI Si
o— " To0 o— " To
DecF\S|’ S] Dec:F\li S!
| |~ - —
DecFe_ 8///0,__\ 4 FDec \ Karstedt's catalyst DecF~_ .P/f,o\ d Fbec
Si—/ SI\ o —Si—H - Si—/ SI\ o
! \ "ofe CeFo O\ \ FD70
C’DecF\si 0 o cl ODecF.Si o d
- — Oz “'--..._O__/-/
/O ° ! \FDec / { \FDec
-0 -0
/SI*-..._._ _—Si /Sl-a..__o_,..—Sl
DecF DecF
FDec FDec

* Chlorosilyl-functional fluoroPOSS compound synthesized from the Pt(ll)
catalyzed hydrosilyation of vinyl-functional fluoroPOSS and dimethylchlorosilane
* Desired compound successfully synthesized in high yield

*Characterized by 'H, 3C, *°F, and 2°Si NMR
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\/ Introduction to F-POSS

R Rf

W 00 —O~s" (1,1,2,2-tetrahydroperfluorodecyl)sSigO,, Polyhedral Oligomeric Silsesquioxane (POSS), or

f\Siljo\Si:dX) fluorodecyl POSS

(/ X)Rf/ - hybrid organic-inorganic structure !
RF\ , . _
\ o I\o,//sl\ - well-defined polyhedral architecture
si’ S'/d " - long-chain fluoroalkyl substituents on periphery of cage
o —0—" g y periphery g
f

f

Due to its unique structure, fluorodecyl POSS has one of the lowest surface energies of an

crystalline solid currently known

- fluorodecyl POSS 9.3 mN/m
- polytetrafluoroethylene 18-20 mN/m
- CF; monolayer 6.7 mN/m

Low surface energy and other unique properties of fluorodecyl POSS has enabled the
development of various types of tunable non-wetting polymeric surfaces

» Methylene P i
> Octane s € o
V.Meghano_l i 2 3 I : Water a
Sivh S5 07 E R Y

Superhydrophobic/oleophilic dip-coated fabric
Tuteja et al, Science, 2007, 318, 1618

Superamphiphobic electrospun surfaces
Tuteja et al, PNAS, 2008, 105, 18200

Superamphiphobic dip-coated fabric
Choi et al, Adv Mater, 2009, 21, 2190
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V)
/ Contact Angle Measurements
‘o¥

Non-wetting surfaces can be developed by a
combination of three parameters

° Chemical functionality (high fluorine content)

. Roughness (micro- and nanoscale)

o Surface Geometry (re-entrant curvature)

What type of influence will functional groups 7
have on F-POSS surface properties?

Solvent impact?

Distribution A: Approved for public release; distribution unlimited

25



A 2
\/ Contact Angle Measurements

* Non-wetting surfaces can be developed by a
combination of three parameters

° Chemical functionality (high fluorine content)

. Roughness (micro- and nanoscale)

o Surface Geometry (re-entrant curvature)

*  What type of influence will functional groups

have on F-POSS surface properties?

®* Solvent impact?

H3C(CH2)7\SI/(CH2)7CH3
Rr OH Ho R o \
AN Ry f 0O R
/Sl &l/ \SI/ \S|/ f
O
~

water hexadecane

8 (arec) =73¢ (eadv) =76°

Sliding angle 7° ——>

Static contact angles of Si wafer surfaces coated
with compounds disilanol (a) and (b), dioctyl (c)
and (d), and diphenyl (e) and (f). Image of
hexadecane droplet (104L) rolling off surface
coated with compound diphenyl (g).
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<

% Dynamic Contact Angle Measurements

Functional Group on F-POSS

F-POSS*

Si-(OH),

Si-(CH,)(CH=CH,)
Si((CH3)((CH,);0C(0)CCH=CH,)
Si-(CH,)( (CH,);0C(0O)C(CH4)=CH,)
Si-(CH3)((CH,)»,CHs)

Si-(CqHs),

Si-((CH);CHy),

water hexadecane
(020) (Orec) (020) (Orec)

124+0.5° | 109.6+0.7° | 79.1£0.4°  65.1%0.5°
116.8 +0.4° 111 + 0.6° 77.4+04° 744+0.8°
116.2+0.4° 100.6+0.8° | 784+0.3° 70.6%+2.3°
118.2+1.0° 90.6+1.0° | 76.8+x0.3° 64.8+1.0°
117.1+0.6° 938+15° | 781+04° 63.0+1.2°
1179+ 0.4° 96.9+1.9° | 78.0x0.4° 16.2+£55°
116.2+0.4° 1105+0.5° | 76.0+0.8° 73.2+04°
117.9+0.5° 955+04° | 69.1+1.2° 23.1%+1.2°

Samples (10 mg/mL) were spin casted on oxygen-plasma cleaned Si wafers at 900 rpm for 30 seconds.
Contact angle measurements were run in triplicate.

Profilometry).

*Chhatre, S. S.; Guardado, J. O.; Moore, B. M.; Haddad, T. S.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. ACS Appl. Mater. Interfaces 2010, 2, 3544.
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sZ  Free Radical Polymerization

\‘\‘y
A(Monomer) k
Polymer  AAAAAAAAAAAA Initiator ——94 5 2.
Initiation _
_(_A')F |l. + Monomer k—'> P
. k
Propogation P; + Monomer P = P
Atp (Monomers
Copolymer ~ ABAABABAB Termination 2 Radicals k—t> Polymer

AAAAAAABBBBBBBB

-Monomers make polymers
-Multiple different types of monomers in a polymer make copolymers

-Choosing a type of monomer will decide what type of polymer you have
-trash bags, cotton, paint, DNA, protein, plastic bottles, etc.....most things you
use in your life
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/ Free Radical Polymerization

‘*
niiator X -  Standard polymerization method
Initiation k. .
l. + Monomer —_1__ o P, * Simple, cheap, easy
. k
Propogation Py + Monomer ——=— Py * Does not allow for much control
Termination 2 Radicals Ky » Polymer
| Y * No block copolymers
Example: Polystyrene * molecular weight difficult to control
| nen heat _ 2.1 +n, .
IN Ly N Two most important factors for polymers:

1) Structure
2) Molecular Weight

.i,+\ _ e

Ethylen coI (monom
Polyethylene glycol

tlﬂ,_lub‘ﬁ S
ng er dical uses, pai
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Reversible Addition-Fragmentation
chain Transfer (RAFT) polymerization

K
Initiator ——94 5 21.

Initiation

. + Monomer — g P

Pn. + S:C_S—R : Pn—S—é—S—R ‘= Pn—S—C:S + R.
Propogation

R. * Monomer 5 P,.

P + Monomer — 5 P

P, + S=C—S—P, ——= P,—S—C—S—P, ==—= Pp—S—C=§ + P

Termination

Monomer Monomer

2 Radicals — s Dead p0|ymel'

Chain Transfer Agent RAFT Polymerization

*Controlled polymerization
*Allows for block copolymers

*Tune molecular weight

Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living Free Radical
Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559-5562

Distribution A: Approved for public release; distribution unlimited 30



Free Radical Copolymerizations

RN S
MMA oy \
(MW = 100 g/mol) Rf\sf O s

0—SilR - Ry
Rf—g N\ fgl—Rf R [J O\i(
[N g s
\él/o/ R Ri—Si \O l,_Rf
R/ (L R%Si/o)g,b
MMA-F-POSS N0 R
(MW = 4179 g/mol) R/

Standard free radical polymerization of methyl methacrylate and MMA-F-POSS
monomers:

— F-POSS monomer is active towards polymerization
— F-POSS incorporation (1-20% by weight)
— Molecular weights range from 10-50,000 g/mol

— Higher F-POSS and polymerization causes problems
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®* Controlled/”living” free radical polymerization of methyl methfacrylate, CPD, and
MMA-F-POSS monomers:

— Promising results with molecular weights ranging from 20-40,000 gm/mol

— Narrow polydispersity indices (1.04-1.1)

Distribution A: Approved for public release; distribution unlimited 32



N

/ Summar
Qe y

® Structures were demonstrated to be reactive towards a variety of dichlorosilanes

* Solubility of F-POSS compounds were shown to be influenced by chemical
functionality

®* Functionality was shown to be influential on contact angle measurements

Currently working on other monomers and polymers for F-POSS

F-POSS compounds have a near limitless potential in producing a variety of new
hydrophobic, oleophobic, or ominiphobic polymer composites.

— Reaction mechanisms, polymer composites, block copolymers, etc....
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Propulsion & Power are Important!

40-70% of cruise missile weight; the critical
factor in survivability, lethality, & reach

50-70% of satellite
- weight 25-40% of
"y system cost the life-
limiting factor

70-90% of
launch weight
40-60% of

system cost -80% of directed

energy weapon
weight and volume

60-80% of tactical missile weight the critical factor
in range & time-to-target

40-60% of aircraft

Air Force fuel costs were $6B TOGW 20'4.0%
in FYO7 alone - " __ of system life

!‘ . cycle cost
o |
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Illil- Designing Superoleophobic Surfaces

* Goal: a design framework for constructing super-repellent surfaces
* Demonstrated electrospun mats (single step process)
* Three key ingredients

161°

Superhydrophobic
6> 150°

PMMA + 44 wt% POSS

electrospun coating (beads on a string) morphology
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